LatMRG Guide  1.0
A software package to test and search for new linear congruential random number generators
Bibliography
[1]

L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing, 35:269–276, 1985.

[2]

L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing, 35:269–276, 1985.

[3]

L. Afflerbach and H. Grothe. The lattice structure of pseudo-random vectors generated by matrix generators. Journal of Computational and Applied Mathematics, 23:127–131, 1988.

[4]

J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 3rd edition, 1999.

[5]

R. Couture and P. L'Ecuyer. Distribution properties of multiply-with-carry random number generators. Mathematics of Computation, 66(218):591–607, 1997.

[6]

U. Dieter. How to calculate shortest vectors in a lattice. Mathematics of Computation, 29(131):827–833, 1975.

[7]

U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation, 44:463–471, 1985.

[8]

G. S. Fishman. Multiplicative congruential random number generators with modulus 2^β: An exhaustive analysis for β=32 and a partial analysis for β=48. Mathematics of Computation, 54(189):331–344, Jan 1990.

[9]

G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research. Springer-Verlag, New York, NY, 1996.

[10]

Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic Library, 2006. Available at http://gmplib.org/.

[11]

G. H. Golub and Ch. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, second edition, 1989.

[12]

H. Grothe. Matrixgeneratoren zur Erzeugung Gleichverteilter Pseudozufallsvektoren. Dissertation (thesis), Tech. Hochschule Darmstadt, Germany, 1988.

[13]

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, second edition, 1981.

[14]

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition, 1998.

[15]

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition, 1998.

[16]

P. L'Ecuyer and R. Couture. An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing, 9(2):206–217, 1997.

[17]

P. L'Ecuyer and R. Couture. An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing, 9(2):206–217, 1997.

[18]

P. L'Ecuyer, F. Blouin, and R. Couture. A search for good multiple recursive random number generators. ACM Transactions on Modeling and Computer Simulation, 3(2):87–98, 1993.

[19]

P. L'Ecuyer. Efficient and portable combined random number generators. Communications of the ACM, 31(6):742–749 and 774, 1988. See also the correspondence in the same journal, 32, 8 (1989) 1019–1024.

[20]

P. L'Ecuyer. Random numbers for simulation. Communications of the ACM, 33(10):85–97, 1990.

[21]

P. L'Ecuyer. Combined multiple recursive random number generators. Operations Research, 44(5):816–822, 1996.

[22]

P. L'Ecuyer. Bad lattice structures for vectors of non-successive values produced by some linear recurrences. INFORMS Journal on Computing, 9(1):57–60, 1997.

[23]

P. L'Ecuyer. Random number generation. In Jerry Banks, editor, Handbook of Simulation, pages 93–137. Wiley, 1998. chapter 4.

[24]

P. L'Ecuyer. Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47(1):159–164, 1999.

[25]

P. L'Ecuyer. Tables of linear congruential generators of different sizes and good lattice structure. Mathematics of Computation, 68(225):249–260, 1999. See the Errata at http://www.iro.umontreal.ca/ lecuyer/myftp/papers/latrules99Errata.pdf.

[26]

P. L'Ecuyer. History of uniform random number generation. In Proceedings of the 2017 Winter Simulation Conference, pages 202–230. IEEE Press, 2017.

[27]

A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515–534, 1982.

[28]

G. Marsaglia and A. Zaman. A new class of random number generators. The Annals of Applied Probability, 1:462–480, 1991.

[29]

G. Marsaglia. Yet another rng. Posted to the electronic billboard sci.stat.math, August 1, 1994.

[30]

Phong Q. Nguyen. Hermite constants and lattice algorithms. In Phong Q. Nguyen and Brigitte Vallée, editors, The LLL Algorithm: Survey and Applications, pages 19–69. Springer Verlag, Berlin, Heidelberg, 2010.

[31]

M. Pohst. On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications. ACM SIGSAM Bulletin, 15:37–44, 1981.

[32]

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In L. Budach, editor, Fundamentals of Computation Theory: 8th International Conference, pages 68–85, Berlin, Heidelberg, 1991. Springer-Verlag.

[33]

C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53(2):201–224, 1987.

[34]

Michael Scott. MIRACL—A Multiprecision Integer and Rational Arithmetic C/C++ Library. Shamus Software Ltd, Dublin, Ireland, 2003. Available at http://www.shamus.ie/.

[35]

V. Shoup. NTL: A Library for doing Number Theory. Courant Institute, New York University, New York, NY, 2005. Available at http://shoup.net/ntl/.

[36]

S. Tezuka, P. L'Ecuyer, and R. Couture. On the add-with-carry and subtract-with-borrow random number generators. ACM Transactions of Modeling and Computer Simulation, 3(4):315–331, 1993.